Automating the construction of a complier heuristics using machine learning

نویسنده

  • Mark W. Stephenson
چکیده

Compiler writers are expected to create effective and inexpensive solutions to NP-hard problems such as instruction scheduling and register allocation. To make matters worse, separate optimization phases have strong interactions and competing resource constraints. Compiler writers deal with system complexity by dividing the problem into multiple phases and devising approximate heuristics for each phase. However, to achieve satisfactory performance, developers are forced to manually tweak their heuristics with trial-and-error experimentation. In this dissertation I present meta optimization, a methodology for automatically constructing high quality compiler heuristics using machine learning techniques. This thesis describes machine-learned heuristics for three important compiler optimizations: hyperblock formation, register allocation, and loop unrolling. The machine-learned heuristics outperform (by as much as 3x in some cases) their state-of-the-art hand-crafted counterparts. By automatically collecting data and systematically analyzing them, my techniques discover subtle interactions that even experienced engineers would likely overlook. In addition to improving performance, my techniques can significantly reduce the human effort involved in compiler design. Machine learning algorithms can design critical portions of compiler heuristics, thereby freeing the human designer to focus on compiler correctness. The progression of experiments I conduct in this thesis leads to collaborative compilation, an approach which enables ordinary users to transparently train compiler heuristics by running their applications as they normally would. The collaborative system automatically adapts itself to the applications in which a community of users is interested. Thesis Supervisor: Saman Amarasinghe Title: Associate Professor

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Semantic Grammars with Constructive nduct ive ogic

Automating the construction of semantic grammars is a difficult and interesting problem for machine learning. This paper shows how the semantic-grammar acquisition problem can be viewed as the learning of search-control heuristics in a logic program. Appropriate control rules are learned using a new first-order induction algorithm that automatically invents useful syntactic and semantic categor...

متن کامل

Learning Semantic Grammars with Constructive Inductive Logic Programming

Automating the construction of semantic grammars is a di cult and interesting problem for machine learning. This paper shows how the semantic-grammar acquisition problem can be viewed as the learning of search-control heuristics in a logic program. Appropriate control rules are learned using a new rst-order induction algorithm that automatically invents useful syntactic and semantic categories....

متن کامل

طراحی سامانه هوشمند ساخت هستان نگار به کمک شبکه عصبی ARTو روشC-value

In recent years, many efforts have been done to design ontology learning methods and automate ontology construction process. The ontology construction process is a time-consuming and costly procedure for almost all domains/applications, so automating this process is a solution to overcome the knowledge acquisition bottleneck in information systems and reduce the construction cost. In this artic...

متن کامل

A New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering

This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...

متن کامل

A bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics

This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006